Selasa, 05 Juni 2012

kata-kata mutiara

  • mungkin ku tak bisa memutar waktu untuk perbaiki kesalahanku. tapi aku akan mengikuti alur hidup dan membuat segala kebaikan di sisa hidupku ini.
  • takkan bisa menjadi yang terebaik
  • pergilah tingggalkanlah diriku. bila memang yang kw perlu tuk bisa melupakan diriku
  • takkan bisa seperti dulu. menghindar adalah caraku
  • meninggalkanmu, jauhi kamu itulah mungkin yang ku lakukan. aku tak akan  bertahan denganmu bila harus trus tersakitiu karenamu. maafkan diri ini yang harus tinggalkanmu dan menjauh darimu.
  • walaupun trus tersakiti oleh sikapmu, tapi sahabat akan tetap bersamamu  dan tak akan pergi walaupun hanya untuk mendengar keluh kesahmu
  • setiap masalah pasti ada jalan keluarnya bicarakanlah dengan baik dan damai
  • konflik, sakit, luka, perasaaan itu hal biasa karena tanpa itu semua , suatu cerita tak akan lengkap.
  • biarkanlah rasa ini tetap ada walau engkau tak lagi perdulikanku.
  • bertahan tuk 1 cinta walau hati tersakiti yakin ku suatu saat nanti semua akan berubah.
  • daun berjatuhan bagaikan jatuhnya ku saat ini.
    ombak mengikis batuan bagaikan kau hancurkan hati
    tapi ku tetap bertahan untuk terus menjaga cinta ini
  • tak pernah ku ragu, karena ku yakin satu ubtuk selamanya
  • mungkin ragaku miliknya tapi hasratku tetap untukmu
  • seandainya kw ktakn sedari dulu mungkin semua takkan begini. tapi semua tlah terlambat
    waktu tlah merubah segalanya

Senin, 04 Juni 2012

kumpulan nama-nama kimia

NITROGEN
Sejarah
Nitrogen (Latin nitrum, Bahasa Yunani Nitron berarti “soda asli”, “gen”, “pembentukan”) secara resmi ditemukan oleh Daniel Rutherford pada 1772, yang menyebutnya udara beracun atau udara tetap. Pengetahuan bahwa terdapat pecahan udara yang tidak membantu dalam pembakaran telah diketahui oleh ahli kimia sejak akhir abad ke-18 lagi. Nitrogen juga dikaji pada masa yang lebih kurang sama oleh Carl Wilhelm Scheele, Henry Cavendish, dan Joseph Priestley, yang menyebutnya sebagai udara terbakar atau udara telah flogistat. Dia memisahkan oksigen dan karbon dioksida dari udara dan menunjukkan gas yang tersisa tidak menunjang pembakaran atau mahluk hidup. Pada saat yang bersamaan ada beberapa ilmuwan lainny yang mengadakan riset tentang nitrogen. Mereka adalah Scheele, Cavendish, Priestley, dan yang lainnya. Mereka menamakan gas ini udara tanpa oksigen.
Gas nitrogen adalah cukup lemas sehingga dinamakan oleh Antoine Lavoisier sebagai azote, daripada perkataan Yunani αζωτος yang bermaksud “tak bernyawa”. Istilah tersebut telah menjadi nama kepada nitrogen dalam perkataan Perancis dan kemudiannya berkembang ke bahasa-bahasa lain.
Senyawa nitrogen diketahui sejak Zaman Pertengahan Eropa. Ahli alkimia mengetahui asam nitrat sebagai aqua fortis. Campuran asam hidroklorik dan asam nitrat dinamakan akua regia, yang diakui karena kemampuannya untuk melarutkan emas. Kegunaan senyawa nitrogen dalam bidang pertanian dan perusahaan pada awalnya ialah dalam bentuk kalium nitrat,terutama dalam penghasilan serbuk peledak (garam mesiu), dan kemudiannya, sebagai baja dan juga stok makanan ternak kimia.



Nitrogen atau zat lemas adalah unsur kimia dalam tabel periodik yang memiliki lambang N dan nomor atom 7. Biasanya ditemukan sebagai gas tanpa warna, tanpa bau, tanpa rasa dan merupakan gas diatomik bukan logam yang stabil, sangat sulit bereaksi dengan unsur atau senyawa lainnya. Dinamakan zat lemas karena zat ini bersifat malas, tidak aktif bereaksi dengan unsur lainnya.
Nitrogen adalah zat non logam, dengan elektronegatifitas 3.0. Mempunyai 5 elektron di kulit terluarnya. Oleh karena itu trivalen dalam sebagian besar senyawa. Nitrogen mengembun pada suhu 77K (-196oC) pada tekanan atmosfir dan membeku pada suhu 63K (-210oC).
Gas nitrogen (N2) terkandung sebanyak 78,1% di udara. Sebagai perbandingan, atmosfir Mars hanya mengandung 2,6% nitrogen. Dari atmosfir bumi, gas nitrogen dapat dihasilkan melalui proses pencairan (liquefaction) dan distilasi fraksi. Nitrogen ditemukan pada mahluk hidup sebagai bagian senyawa-senyawa biologis.
Nitrogen mengisi 78,08 persen atmosfir Bumi dan terdapat dalam banyak jaringan hidup. Zat lemas membentuk banyak senyawa penting seperti asam amino, amoniak, asam nitrat, dan sianida.

Unsur
Kimiawan Perancis Antoine Laurent Lavoisier menamakan nitrogen azote, yang artinya tanpa kehidupan. Walaupun begitu, senyawa-senyawa nitrogen ditemukan di makanan, pupuk, racun dan bahan peledak. Sebagai gas nitrogen tidak bewarna, tidak memiliki aroma dan dianggap sebagai inert element (elemen yang tak bereaksi). Sebagai benda cair, ia juga tidak bewarna dan beraroma dan memiliki ketampakan yang sama dengan air. Gas nitrogen dapat dipersiapkan dengan memanaskan solusi amonium nitrat (NH4NO3) dalam air.

Senyawa nitrogen
Hidrida utama nitrogen ialah amonia (NH3) walaupun hidrazina (N2H4) juga banyak ditemukan. Amonia bersifat basa dan terlarut sebagian dalam air membentuk ion ammonium (NH4+). Amonia cair sebenarnya sedikit amfiprotik dan membentuk ion ammonium dan amida (NH2-); keduanya dikenal sebagai garam amida dan nitrida (N3-), tetapi terurai dalam air.
Gugus bebas amonia dengan atom hidrogen tunggal atau ganda dinamakan amina. Rantai, cincin atau struktur hidrida nitrogen yang lebih besar juga diketahui tetapi tak stabil.
Natrium nitrat (NaNO3) dan kalium nitrat (KNO3) terbentuk oleh dekomposisi bahan-bahan organik dengan senyawa-senyawa logam tersebut. Dalam kondisi yang kering di beberapat tempat, saltpeters (garam) ini ditemukan dalam jumlah yang cukup dan digunakan sebagai pupuk. Senyawa-senyawa inorganik nitrogen lainnya adalah asam nitrik (HNO3), ammonia (NH3) dan oksida-oksida (NO, NO2, N2O4, N2O), sianida (CN-), dsb. Siklus nitrogen adalah salah satu proses yang penting di alam bagi mahluk hidup. Walau gas nitrogen tidak bereaksi, bakteri-bakteri dalam tanah dapat memperbaiki nitrogen menjadi bentuk yang berguna (sebagai pupuk) bagi tanaman. Dengan kata lain, alam telah memberikan metode untuk memproduksi nitrogen untuk pertumbuhan tanaman. Binatang lantas memakan tanaman-tanaman ini dimana nitrogen telah terkandung dalam sistim mereka sebagai protein. Siklus ini lengkap ketika bakteria-bakteria lainnya mengubah sampah senyawa nitrogen menjadi gas nitrogen. Sebagai komponen utama protein, nitrogen merupakan bahan penting bagi kehidupan.

Amonia
Amonia (NH3) merupakan senyawa komersil nitrogen yang paling penting. Ia diproduksi menggunakan proses Haber. Gas natural (metana, CH4) bereaksi dengan uap panas untuk memproduksi karbon dioksida dan gas hidrogen (H2) dalam proses dua langkah. Gas hidrogen dan gas nitrogen lantas direaksikan dalam proses Haber untuk memproduksi amonia. Gas yang tidak bewarna ini bau yang menyengat dapat dengan mudah dicairkan. Bahkan bentuk cair senyawa ini digunakan sebagai pupuk nitrogen. Amonia juga digunakan untuk memproduksi urea (NH2CONH2), yang juga digunakan sebagai pupuk dalam industri plastik, dan dalam industri peternakan sebagai suplemen makanan ternak. Amonia sering merupakan senyawa pertama untuk banyak senyawa nitrogen.

Isotop

Ada 2 isotop Nitrogen yang stabil yaitu: 14N dan 15N. Isotop yang paling banyak adalah 14N (99.634%), yang dihasilkan dalam bintang-bintang dan yang selebihnya adalah 15N. Di antara sepuluh isotop yang dihasilkan secara sintetik, 1N mempunyai paruh waktu selama 9 menit dan yang selebihnya sama atau lebih kecil dari itu.

Peringatan

Limbah baja nitrat merupakan penyebab utama pencemaran air sungai dan air bawah tanah. Senyawa yang mengandung siano(-CN) menghasilkan garam yang sangat beracun dan bisa membawa kematian pada hewan dan manusia.

Nitrogen dalam perindustrian

Peranan nitrogen dalam perindustrian relatif besar dan industri yang menggunakan unsur dasar nitrogen sebagai bahan baku utamanya disebut pula sebagai industri nitrogen. Nitrogen yang berasal dari udara merupakan komponen utama dalam pembuatan pupuk dan telah banyak membantu intensifikasi produksi bahan makanan di seluruh dunia. Pengembangan proses fiksasi nitrogen telah berhasil memperjelas berbagai asas proses kimia dan proses tekanan tinggi serta telah menyumbang banyak perkembangan di bidang teknik kimia.
Sebelum adanya proses fiksasi (pengikatan) nitrogen secara sintetik, sumber utama nitogen untuk keperluan pertanian hanyalah bahan limbah dan kotoran hewan, hasil dekomposisi dari bahan-bahan tersebut serta amonium sulfat yang didapatkan dari hasil sampingan pembuatan kokas dari batubara. Bahan-bahan seperti ini tidak mudah ditangani belum lagi jumlahnya yang tidak mencukupi semua kebutuhan yang diperlukan.
Salpeter Chili, salpeter dari air kencing hewan dan manusia, dan amonia yang dikumpulkan dari pembuatan kokas menjadi penting belakangan ini tetapi akhirnya disisihkan lagi oleh amonia sintetik dan nitrat. Amonia merupakan bahan dasar bagi pembuatan hampir semua jenis produk yang memakai nitrogen.
Catatan pertama mengenai usaha pembentukan senyawa nitrogen sintetis pertama dilakukan oleh Priestley dan Cavendish yang melewatkan percikan bunga api listrik di dalam bejana berisi udara bebas dan akhirnya mendapatkan nitrat setelah sebelumnya melarutkan oksida yang terbentuk dalam reaksi dengan alkali. Penemuan ini cukup besar di masanya, mengingat kebutuhan senyawa nitrogen untuk pupuk yang besar namun sayangnya alam tidak cukup untuk memenuhinya. Karena itu, adanya senyawa nitrogen yang dapat dibuat di dalam laboratorium memberikan peluang baru.
Namun usaha komersial dari proses ini tidak berjalan dengan mudah mengingat banyaknya kebutuhan energi yang besar dan efisiensinya yang terlalu rendah. Setelah ini banyak proses terus dikembangkan untuk perbaikan. Nitrogen pernah juga diikatkan dari udara sebagai kalsium sianida, namun tetap saja proses ini masih terlalu mahal. Proses-proses lain juga tidak terlalu berbeda, seperti pengolahan termal atas campuran oksida nitrogen (NOX), pembentukan sianida dari berbagai sumber nitrogen, pembentukan aluminium nitrida, dekomposisi amonia dan sebagainya. Semuanya tidak menunjukkan harapan untuk dapat dikomersialkan walaupun secara teknis semua proses ini terbukti dapat dilaksanakan.
Sampai akhirnya Haber dan Nernst melakukan penelitian yang menyeluruh tentang keseimbangan antara nitogen dan hidrogen di bawah tekanan sehingga membentuk amonia. Dari penelitian ini pula didapatkan beberapa katalis yang sesuai. Reaksi ini sebenarnya membutuhkan tekanan sistem yang tinggi, tetapi pada masa itu peralatan yang memadai belum ada dan mereka merancang peralatan baru untuk reaksi tekanan tinggi (salah satu sumbangan dari perkembangan industri baru ini).
Bukan peralatan tekanan tinggi saja yang akhirnya tercipta karena dipicu oleh tuntutan industri nitrogen ini. Haber dan Bosch, ilmuwan lain yang bekerjasama dengan Haber, juga mengembangkan proses yang lebih efisien dalam usahanya menghasilkan hidrogen dan nitrogen murni. Proses sebelumnya adalah dengan elektrolisis air untuk menghasilkan hidrogen murni, dan distilasi udara cair untuk mendapatkan nitrogen murni yang kedua usaha ini masih terlalu mahal untuk diaplikasikan dalam mengkomersialkan proses baru pembuatan amonia mereka. Maka mereka menciptakan proses lain yang lebih murah.
Usaha bersama mereka mencapai kesuksesan pada tahun 1913 ketika berhasil membentuk amonia pada tekanan tinggi. Proses baru ini masih memerlukan banyak energi namun pengembangan lebih lanjut terus dilakukan. Dengan cepat proses ini berkembang melebihi proses sintetis senyawa nitrogen lainnya, dan menjadi dominan sampai sekarang dengan perbaikan-perbaikan besar masih berlanjut.

Bahan baku

Bahan baku utama yang banyak digunakan dalam industri nitrogen adalah udara, air, hidrokarbon dan tenaga listrik. Batubara dapat menggantikan hidrokarbon namun membutuhkan penanganan yang lebih rumit, sehingga proses menjadi kompleks dan berakibat pada mahalnya biaya operasi.

Penggunaan dan ekonomi

Dari semua macam senyawa nitrogen, amonia adalah senyawa nitogen yang paling penting. Amonia merupakan salah satu senyawa dasar nitogen yang dapat direaksikan dengan berbagai senyawa yang berbeda selain proses pembuatan amonia yang sudah terbukti ekonomis dan efisiensinya yang sampai sekarang terus ditingkatkan. Sebagian besar amonia diperoleh dengan cara pembuatan sintetis di pabrik dan sebagian kecilnya diperoleh dari hasil samping suatu reaksi.
Penggunaan gas amonia bermacam-macam ada yang langsung digunakan sebagai pupuk, pembuatan pulp untuk kertas, pembuatan garam nitrat dan asam nitrat, berbagai jenis bahan peledak, pembuatan senyawa nitro dan berbagai jenis refrigeran. Dari gas ini juga dapat dibuat urea, hidrazina dan hidroksilamina.
Gas amonia banyak juga yang langsung digunakan sebagai pupuk, namun jumlahnya masih terlalu kecil untuk menghasilkan jumlah panen yang maksimum. Maka dari itu diciptakan pupuk campuran, yaitu pupuk yang mengandung tiga unsur penting untuk tumbuhan (N + P2O5 + K2O). Pemakaian yang intensif diharapkan akan menguntungkan semua pihak.

Amonia Sintetik

Amonia kualitas komersial meliputi NH3 cair murni dan yang larut dalam air dengan konsentrasi 28 %NH3. Transportasi bahan ini sebagian besar memakai tangki silinder dan sebagian lagi ada yang langsung disalurkan melalui pipa. Belakangan ini pemakaian pipa mulai berkembang pesat, terutama dari pusat produksi ke pusat distribusi yang keseluruhan panjangnya bisa mencapai 1.000 Km[1].

Reaksi dan keseimbangan

2N2(g) + 3H2(g) ==> 2NH3(g)
Karena molekul produk amonia mempunyai volum yang lebih kecil dari jumlah volum reaktan maka keseimbangan akan bertambah ke arah amonia dengan peningkatan tekanan. Peningkatan suhu reaksi menyebabkan memberikan efek yang sebaliknya terhadap keseimbangan karena reaksi bersifat eksotermis, namun memberikan efek positif terhadap laju reaksi. Maka dari itu perlu dihitung suhu optimal agar menghasilkan keuntungan yang maksimum.

Laju dan katalis reaksi

Agar peralatan dapat dibuat sekompak mungkin, maka perlu dipikirkan pemberian katalis agar laju reaksi dapat berjalan dengan cepat karena reaksi hidrogen dan nitrogen berjalan sangat lambat.
Banyak jenis katalis yang digunakan secara komersial di berbagai pabrik, namun yang umum digunakan adalah katalis besi dengan tambahan banyak promotor seperti oksida aluminium, zirkonium, silikon dengan konsentrasi 3 % atau oksida kalium sekitar 1 %.

Prosedur pembuatan

Pembuatan amonia terdiri dari enam tahap
  1. Pembuatan gas-gas pereaksi
  2. Pemurnian
  3. Kompresi
  4. Reaksi katalitik
  5. Pengumpulan amonia yang terbentuk
  6. Resirkulasi
Biaya pembuatan amonia sangat tergantung pada tekanan yang digunakan, suhu dan katalis selain bahan yang digunakan.


Amonium nitrat

Amonium nitrat atau dengan sebutan NH4NH3 (ammonium nitrate) dapat dibuat dengan amonia dan asam nitrat sebagai bahan bakunya. proses pembuatan amonium nitrat pun ada beberapa macam antara lain :
1. Proses Prilling
2. Proses Kristalisasi, dan
3. Proses Stengel atau Granulasi
Dari ke-tiga tahap tersebut, adalah proses kristalisasilah yang paling mudah; prosesnya; bahan baku amonia dan asam nitrat masuk ke reaktor dengan bentuk fasenya adalah amonia masih berupa gas dan asam nitrat telah berupa fase liquid. dari reaktor semua bahan baku tersebut di lanjutkan ke evaporator lalu dikristalizer dan akhirnya di separator dan jadilah amonium nitrat.
Siklus nitrogen adalah suatu proses konversi senyawa yang mengandung unsur nitrogen menjadi berbagai macam bentuk kimiawi yang lain. Transformasi ini dapat terjadi secara biologis maupun non-biologis. Beberapa proses penting pada siklus nitrogen, antara lain fiksasi nitrogen, mineralisasi, nitrifikasi, denitrifikasi.
Walaupun terdapat sangat banyak molekul nitrogen di dalam atmosfir, nitrogen dalam bentuk gas tidaklah reaktif.[1] Hanya beberapa organisme yang mampu untuk mengkonversinya menjadi senyawa organik dengan proses yang disebut fiksasi nitrogen.
Fiksasi nitrogen yang lain terjadi karena proses geofisika, seperti terjadinya kilat. Kilat memiliki peran yang sangat penting dalam kehidupan, tanpanya tidak akan ada bentuk kehidupan di bumi. Walaupun demikian, sedikit sekali makhluk hidup yang dapat menyerap senyawa nitrogen yang terbentuk dari alam tersebut. Hampir seluruh makhluk hidup mendapatkan senyawa nitrogen dari makhluk hidup yang lain. Oleh sebab itu, reaksi fiksasi nitrogen sering disebut proses topping-up atau fungsi penambahan pada tersedianya cadangan senyawa nitrogen.
Vertebrata secara tidak langsung telah mengkonsumsi nitrogen melalui asupan nutrisi dalam bentuk protein maupun asam nukleat. Di dalam tubuh, makromolekul ini dicerna menjadi bentuk yang lebih kecil yaitu asam amino dan komponen dari nukleotida, dan dipergunakan untuk sintesis protein dan asam nukleat yang baru, atau senyawa lainnya.
Sekitar setengah dari 20 jenis asam amino yang ditemukan pada protein merupakan asam amino esensial bagi vertebrata, artinya asam amino tersebut tidak dapat dihasilkan dari asupan nutrisi senyawa lain, sedang sisanya dapat disintesis dengan menggunakan beberapa bahan dasar nutrisi, termasuk senyawa intermediat dari siklus asam sitrat.
Asam amino esensial disintesis oleh organisme invertebrata, biasanya organisme yang mempunyai lintasan metabolisme yang panjang dan membutuhkan energi aktivasi lebih tinggi, yang telah punah dalam perjalanan evolusi makhluk vertebrata.
Nukleotida yang diperlukan dalam sintesis RNA maupun DNA dapat dihasilkan melalui lintasan metabolisme, sehingga istilah “nukleotida esensial” kurang tepat. Kandungan nitrogen pada purina dan pirimidina yang didapat dari asam amino glutamina, asam aspartat dan glisina, layaknya kandungan karbon dalam ribosa dan deoksiribosa yang didapat dari glukosa.
Kelebihan asam amino yang tidak digunakan dalam proses metabolisme akan dioksidasi guna memperoleh energi. Biasanya kandungan atom karbon dan hidrogen lambat laun akan membentuk CO2 atau H2O, dan kandungan atom nitrogen akan mengalami berbagai proses hingga menjadi urea untuk kemudian diekskresi.
Setiap asam amino memiliki lintasan metabolismenya masing-masing, lengkap dengan perangkat enzimatiknya.


Siklus urea

Pada eukariota, siklus urea (bahasa Inggris: urea cycle, ornithine cycle) merupakan bagian dari siklus nitrogen, yang meliputi reaksi konversi amonia menjadi urea. Siklus ini ditemukan pertama kali oleh Hans Krebs dan Kurt Henseleit pada tahun 1932.
Pada mamalia, siklus urea terjadi di dalam hati, produk urea kemudian dikirimkan ke organ ginjal untuk diekskresi. Dua jenjang reaksi pada siklus urea terjadi di dalam mitokondria.[2] Ringkasan reaksi siklus urea adalah:[3]


Amonia

Amonia merupakan produk dari reaksi deaminasi oksidatif yang bersifat toksik. Pada manusia, kegagalan salah satu jenjang pada siklus urea dapat berakibat fatal, karena tidak terdapat lintasan alternatif untuk menghilangkan sifat toksik tersebut selain mengubahnya menjadi urea. Defisiensi enzimatik pada siklus ini dapat mengakibatkan simtoma hiperamonemia yang dapat berujung pada kelainan mental, kerusakan hati dan kematian. Sirosis pada hati yang diakibatkan oleh konsumsi alkohol berlebih terjadi akibat defisiensi enzim yang menghasilkan Sarbamil fosfat pada jenjang reaksi pertama pada siklus ini.
Ikan mempunyai rasio amonia yang rendah di dalam darah, karena amonia diekskresi sebagai gugus amida dalam senyawa glutamina. Reaksi hidrolisis pada glutamina akan menkonversinya menjadi asam glutamat dan melepaskan gugus amonia.
Sedangkan manusia hanya mengekskresi sedikit sekali amonia, yang dikonversi oleh asam di dalam urin menjadi ion NH4+, sebagai respon terhadap asidosis karena amonia memiliki kapasitas seperti larutan penyangga yang menjaga pH darah dengan menetralkan kadar asam yang berlebih.

Urea

Urea merupakan zat diuretik higroskopik dengan menyerap air dari plasma darah menjadi urin. Kadar urea dalam darah manusia disebut BUN (bahasa Inggris: Blood Urea Nitrogen). Peningkatan nilai BUN terjadi pada simtoma uremia dalam kondisi gagal ginjal akut dan kronis atau kondisi gagal jantung dengan konsekuensi tekanan darah menjadi rendah dan penurunan laju filtrasi pada ginjal. Pada kasus yang lebih buruk, hemodialisis ditempuh untuk menghilangkan larutan urea dan produk akhir metabolisme dari dalam darah.
Pada hewan seperti burung dan reptil yang harus mencadangkan air di dalam tubuhnya, nitrogen diekskresi sebagai asam urat yang bersenyawa dengan sedikit kandungan air. Sedang pada manusia, asam urat tidak disintesis dari amonia, melainkan dari adenina dan guanina yang terdapat pada berbagai nukleotida. Asam urat biasanya diekskresi dalam jumlah sedikit, melalui urin. Kadar asam urat dalam darah dapat meningkat pada penderita gangguan ginjal dan leukimia. Bentuk garam dari asam urat dapat mengendap menjadi batu ginjal maupun batu kemih. Pada artritis, endapan garam dari asam urat terjadi pada tulang rawan yang terdapat pada persendian.

Jenjang reaksi

Sarbamil fosfat sintetase, sebuah enzim, merupakan katalis pada reaksi dengan substrat NH3, CO2 dan ATP menjadi sarbamil fosfat,

yang kemudian diaktivasi oleh asam N-asetilglutamat yang terbentuk dari asam glutamat dan asetil-KoA dengan enzim N-asetilglutamat sintetase. N-asetilglutamat merupakan regulator yang penting dalam ureagenesis selain arginina, kortikosteroid dan protein yang lain.
Reaksi kondensasi yang terjadi pada ornitina lantas memicu konversi sarbamil fosfat menjadi sitrulina dengan bantuan enzim ornitina transarbamilase.
Kemudian sitrulina dilepaskan dari dalam matriks menuju sitoplasma, dan kondensasi terjadi dengan asam aspartat dan enzim argininosuksinat sintetase, membentuk asam argininosuksinat, yang kemudian diiris oleh argininasuksinat liase menjadi asam fumarat dan arginina. Asam fumarat akan dioksidasi dalam siklus sitrat di dalam mitokondria, sedangkan arginina akan teriris menjadi urea dan ornitina dengan enzim arginase hepatik. Baik argininosuksinat liase maupun arginase diinduksi oleh rasa lapar, dibutiril cAMP dan kortikosteroid.
Nitrogen oksida sering disebut dengan NOx karena oksida nitrogen mempunyai 2 bentuk yang sifatnya berbeda, yakni gas NO2 dan gas NOx. Sifat gas NO2 adalh berwarna dan berbau, sedangakn gas NO tidak berwarna dan tidak berbau. Warna gas NO2 adalah merah kecoklatan dan berbau tajam menyengat hidung.
Kadar NOx diudara daearh perkotaan yang berpenduduk padat akan lebih tinggi dari daerah pedesaan yang berpenduduk sedikit. Hal ini disebabkan karena berbagai macam kegiatan yang menunjang kehidupan manusia akan menambah kadar NOx di udara, seperti transportasi, generator pembangkit listrik, pembuangan sampah dan lain-lain.
Pencemaran gas NOx diudara teruatam berasal dari gas buangan hasil pembakaran yang keluar dari generator pembangkit listrik stasioner atau mesin-mesin yang menggunakan bahan bakar gas alami. Keberadaan NOx diudara dapat dipengaruhi oleh sinar matahari yang mengikuti daur reaksi fotolitik NO2 sebagai berikut :
NO2 + sinar matahari            →            NO + O
O + O2 →                       O3 (ozon)
O3 + NO                   →                         NO2 + O2
Ada dua cara untuk menghindari pembakaran tidak sempurna, maka dilakukan 2 proses pembakaran yaitu :
1. Bahan bakar dibakar pada temperatur tinggi dengan sejumlah udara sesuai dengan persamaan stoikiometri, misalnya dengan 90 -95% udara. Pembakaran NO dibatasi tidak dengan adanya kelebihan udara.
2. Bahan bakar dibakar sempurna pada suhu relatif rendah dengan udara berlebih. Suhu rendah menghindarkan pembentukan NO.
Kedua proses ini menurunkan pembentukan NO sampai 90%. NO2 pada manusia dapat meracuni paru-paru, kadar 100 ppm dapat menimbulkan kematian, 5 ppm setelah 5 menit menimbulkan sesak nafas.

Dampak Pencemaran Nitrogen Oksida (NOx)

Gas nitrogen oksida (NOx) ada dua macam , yakni gas nitrogen monoksida (NO) dan gas nitrogen dioksida (NO2). Kedua macam gas tersebut mempunyai sifat yang berbeda dan keduanya sangat berbahaya bagi kesehatan. Gas NO yang mencemari udara secara visual sulit diamati karena gas tersebut tidak berwarna dan tidak berbau. Sedangkan gas NO2 bila mencemari udara mudah diamati dari baunya yang sangat menyengat dan warnanya coklat kemerahan. Udara yang mengandung gas NO dalam batas normal relatif aman dan tidak berbahaya, kecuali jika gas NO berada dalam konsentrasi tinggi. Konsentrasi gas NO yang tinggi dapat menyebabkan gangguan pada system saraf yang mengakibatkan kejang-kejang. Bila keracunan ini terus berlanjut akan dapat menyebabkan kelumpuhan. Gas NO akan menjadi lebih berbahaya apabila gas itu teroksidasi oleh oksigen sehinggga menjadi gas NO2.
Udara yang telah tercemar oleh gas nitrogen oksida tidak hanya berbahaya bagi manusia dan hewan saja, tetapi juga berbahaya bagi kehidupan tanaman. Pengaruh gas NOx pada tanaman antara lain timbulnya bintik-bintik pada permukaan daun. Pada konsentrasi yang lebih tinggi gas tersebut dapat menyebabkan nekrosis atau kerusakan pada jaringan daun. Dalam keadaan seperti ini daun tidak dapat berfungsi sempurna sebagai temapat terbentuknya karbohidrat melalui proses fotosintesis. Akibatnya tanaman tidak dapat berproduksi seperti yang diharapkan. Konsentrasi NO sebanyak 10 ppm sudah dapat menurunkan kemampuan fotosintesis daun sampai sekitar 60% hingga 70%.
Pencemaran udara oleh gas NOx dapat menyebabkan timbulnya Peroxy Acetil Nitrates yang disingkat dengan PAN. Peroxi Acetil Nitrates ini menyebabkan iritasi pada mata yang menyebabkan mata terasa pedih dan berair. Campuran PAN bersama senyawa kimia lainnya yang ada di udara dapat menyebabkan terjadinya kabut foto kimia atau Photo Chemistry Smog yang sangat menggangu lingkungan.

Pengaruh bagi kesehatan

Nitrogen dioksida merupakan polutan udara yang dihasilkan pada proses pembakaran. Ketika nitrogen dioksida hadir, nitrogen oksida juga ditemukan ; gabungan dari NO dan NO2 secara kolektif mengacu kepada nitrogen oksida (NOx).
Pada sangat konsentrasi tinggi, dimana mungkin hanya dialami pada kecelakaan industri yang fatal, paparan NO2 dapat mengakibatkan kerusakan paru-paru yang berat dan cepat. Pengaruh kesehatan mungkin juga terjadi pada konsentrasi ambient yang jauh lebih rendah seperti pada pengamatan selama peristiwa polusi di kota. Bukti yang didapatkan menyarankan bahwa penyebaran ambient kemungkinan akibat dari pengaruh kronik dan akut, khususnya pada sub-grup populasi orang yang terkena asma.
NO2 terutama berkelakuan sebagai agen pengoksidasi yang kemungkinan merusak membran sel dan protein. Pada konsentrasi tinggi, saluran udara akan menyebabkan peradangan yang akut. Ditambah lagi, penyebaran dalam waktu-singkat berpengaruh terhadap peningkatan resiko infeksi saluran pernapasan. Meskipun banyak pengontrolan penyebaran yang dilakukan, fakta secara jelas mendefinisikan hubungan antara konsentrasi atau dosis dan umpan baliknya tidaklah cukup.
Untuk penyebaran yang akut, hanya konsentrasi yang sangat tinggi (>1880 Mg/m3, 1 ppm) mempengaruhi kesehatan orang ; bilamana, orang dengan asma atau penyakit paru-paru yang akut lebih rentan pada konsentrasi lebih rendah.

Referensi

  1. ^ Appl, P.: A Brief History of Ammonia Production from Early to the Present, Nitrogen Mar./Apr., 1976
  2. ^ Brykowski, F.J. (ed.):Ammonia and Synthesis Gas, Noyes, Park Ridge, N.J., 1981.
  3. ^ Strelzoff, S.: Technology and Manufacture of Ammonia, Wiley-Interscience, New York, 1981.
  4. ^ Varicini, C.A. and D. J. Borgars: Synthesis of Ammonia, CRC.
  5. ^ (en)Bruce Alberts, Alexander Johnson, Julian Lewis, Martin Raff, Keith Roberts, and Peter Walter (2002). Molecular Biology of the Cell – How Cells Obtain Energy from Food : Amino Acids and Nucleotides Are Part of the Nitrogen Cycle (edisi ke-4). Garland Science. ISBN 0-8153-3218-1. http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=mboc4&part=A287#A307. Diakses pada 16 Juli 2010.
  6. ^ (en)George J Siegel, Bernard W Agranoff, R Wayne Albers, Stephen K Fisher, dan Michael D Uhler. (1999). Basic Neurochemistry – Molecular, Cellular and Medical Aspects (edisi ke-6). Lippincott-Raven. ISBN 0-397-51820-X. http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=bnchm&part=A3134. Diakses pada 18 Juli 2010.
  7. ^ (en)“Urea Cycle”. Elmhurst College, Charles E. Ophardt. http://www.elmhurst.edu/~chm/vchembook/633ureacycle.html. Diakses pada 17 Juli 2010.

Lantanida

Posted in Kimia AnOrganik, Tugas Kuliah, Uncategorized on Januari 12, 2011 by rikychem
Lantanida

Lantanida adalah kelompok unsur kimia yang terdiri dari 15 unsur, mulai lantanum (La) sampai lutetium (Lu) pada tabel periodik, dengan nomor atom 57 sampai 71. Semua lantanida, kecuali lutetium, adalah unsur blok-f yang berarti bahwa elektronnya terisi sampai orbit 4f. Golongan ini diberi nama berdasarkan lantanum.
(http://id.wikipedia.org/wiki/Lantanida)
Walaupun lantanoid disebut unsur tanah jarang, kelimpahannya di kerak bumi tidak sedikit dan kimia penggunaan sifat-sifat lantanoid yang unik sangat mungkin akan berkembang cepat dalam waktu yang tidak terlalu lama.
(Taro Saito. 1996)
Lima belas unsur yang ditunjukkan dalam Tabel 7.1 dari lantanum, La (4f0), sampai lutetium, Lu (4f14), merupakan lantanoid. Ln biasanya digunaan sebagai simbol umum unsur-unsur lantanoid. Walaupun lantanoid, bersama dengan skandium, Sc, dan ytrium, Y, sering disebut unsur-unsur tanah jarang, unsur-unsur ini relatif melimpah di kerak bumi. Kecuali prometium, Pm, yang membentuk isotop stabil, bahkan yang paling kecil kelimpahannya tulium, Tm, dan lutetium, Lu, kelimpahannya sama dengan kelimpahan iodin. Karena lantanoid memiliki sifat yang sangat mirip dan sukar dipisahkan satu sama lain, di waktu yang lalu unsur-unsur ini belum banyak dimanfaatkan dalam riset dasar dan terapan, jadi nama tanah jarang berasal dari fakta ini. Karena adanya metoda ekstraksi pelarut cair-cair dengan menggunakan tributilfosfin oksida sejak tahun 1960-an, unsur-unsur lantanoid menjadi mudah didapat dan mulai banyak dimanfaatkan tidak hanya untuk riset dasar tetapi juga dalam material seperti dalam paduan logam, katalis, laser, tabung sinar katoda, dsb.

1.      Sejarah
Sesuai namanya, unsur-unsur ini jarang ditemukan di bumi. Jika ditemukan selalu dalam jumlah yang sangat kecil. Kelompok logam ini pertama kali ditemukan pada tahun 1787 oleh seorang letnan angkatan bersenjata Swedia bernama Karl Axel Arrhenius. Ia mengumpulkan mineral hitam ytteribite dari penambangan feldspar dan quartzkuarsa di dekat Desa Ytterby, Swedia. Kemudian, mineral ini berhasil dipisahkan oleh J. Gadoli pada tahun 1794, dengan memperoleh mineral Ytterbite. Selanjutnya, nama mineral tersebut diganti menjadi Gadolinite.
Penemuan unsur baru ini, tentunya memicu penelitian yang membuahkan penemuan unsur-unsur logam tanah jarang lain.
  • Tahun 1804 Klaproth dan rekan-rekannya menemukan ceria yang merupakan bentuk oksida dari Cerium.
  • Tahun 1828, Belzerius memperoleh mineral thoria dari mineral thorite
  • Tahun 1842 Mosander memisahkan senyawa bernama yttria menjadi tiga macam unsur melalui pengendapan fraksional menggunakan asam oksalat dan hidroksida. Unsur tersebut adalah Yttria, Terbia dan Erbia.
  • Tahun 1878, berkat petunjuk M. Delafontaine, Boisbaudran mampu memperoleh samarium.
  • Tahun 1885, Welsbach memisahkan praseodymium dan neodymium yang terdapat pada samarium.
  • Tahun 1886, Boisbaudran memperoleh gadolinium dari mineral Ytterbia yang diperoleh J.C.G de Marignac tahun 1880
  • Pada 1907 dari Ytterbia yang diperoleh Marignac, L. de Boisbaudran mampu memisahkan senyawa tersebut menjadi Neoytterium dan Lutecium. P.T. Cleve mampu memisahkan tiga unsur dari erbia dan terbia yang dimiliki Marignac. Ia memperoleh Erbium, Holminium dan Thulium. L. De Boisbaudran, mampu memperoleh unsur lain bernama Dysporsia
(http://aryandi28.blogspot.com/2010/02/lantanida.html)
2.      Sumber
Logam tanah jarang tidak ditemukan berupa unsur bebas dalam lapisan kerak bumi (earth’s crust). Namun ia berbentuk paduan membentuk senyawa kompleks. Sehingga logam tanah jang harus dipisahkan terlebih dahulu dari senyawa kompleks tersebut. rare earth elemen yang harus dipisahkan terlebih dahulu.
3.      Sifat-sifat umum
Secara tegas, keempat belas unsur diatas mengikuti La yang mana elektron-elektron 4f ditambahkan berurutan pada konfigurasi La. Istilah lantanida sendiri diambil dari kata unsur lanthanum yang mana unsur-unsur yang lainnya mengikuti unsur lanthanum ini. Unsur Lanthanum adalah prototip bagi kempat belas unsur berikutnya. Penurunan yang tajam dalam jari-jari atom dan ion dari unsur-unsur ini disebut dengan istilah pengerutan lantanida. Unsur-unsur lanthanida memiliki keelektropositifan yang tinggi dengan potensial M3+/M mulai dari -2,25 V (Lu) sampai -2,52 V (La).
Yttrium, yang terletak di atas La dalam golongan III A memiliki ion +3 yang mirip dengan inti gas mulia; sehubungan dengan pengaruh pengerutan lantanida, jari Y3+ dekat pada nilai bagi Tb3+ dan Dy3+. Akibatnya, Y terdapat pada mineral Lantanida. Unsur yang lebih ringan dalam golongan IIIA ini yaitu Skandium. Meskipun ia memiliki jari-jari ionik yang lebih kecil dan memperlihatkan sifat kimia intermediat antara jari-jari ionik Al dan Y dan lantanida.
4.      Lantanum (La)
Lantanum adalah logam lembut, lunak, ulet, perak-putih. Lantanum adalah kimia aktif, salah satu yang paling reaktif dari logam langka bumi, ia mengoksidasi dengan cepat di udara dan bereaksi dengan air untuk membentuk hidroksida tersebut. Lantanum mudah terbakar, garam seringkali sangat tidak larut.
Aplikasi
Lantanum adalah salah satu bahan kimia langka, yang dapat ditemukan di rumah-rumah dalam peralatan seperti televisi warna, lampu neon, lampu hemat energi dan kacamata. Semua bahan kimia jarang memiliki sifat sebanding. La2O2 digunakan untuk membuat gelas optik khusus (inframerah adsorbing kaca, kamera dan lensa teleskop). Jika ditambahkan dalam jumlah kecil itu meningkatkan kelenturan dan ketahanan baja. Lantanum digunakan sebagai bahan inti dalam elektroda karbon busur. garam Lantanum termasuk dalam katalis zeolit digunakan dalam penyulingan minyak bumi karena dapat menstabilkan zeolit pada suhu tinggi.
5.      Cerium (Ce)
Cerium adalah logam lunak lembut, ulet, logam besi abu-abu, sedikit lebih keras dari timah, sangat reaktif, mengoksidasi perlahan dalam air dingin dan cepat dalam air panas. Larut dalam asam dan dapat terbakar ketika dipanaskan atau tergores dengan pisau.
Aplikasi
Logam ini digunakan sebagai inti untuk elektroda karbon lampu busur, untuk kaos lampu pijar untuk penerangan gas. Cerium digunakan dalam paduan aluminium dan besi, dalam stainless steel sebagai agen pengerasan presipitasi, membuat magnet permanen. oksida Cerium adalah bagian dari katalis konverter katalitik yang digunakan untuk membersihkan gas buang kendaraan, juga mengkatalisis reduksi oksida nitrogen (NOx) ke gas nitrogen. Semua mobil baru sekarang dilengkapi dengan conveter katalitik yang terdiri dalam substrat keramik atau logam, lapisan oksida aluminium dan cerium dan lapisan logam terdispersi halus seperti platinum atau rhodium, yang merupakan permukaan aktif.
Sulfida Cerium (Ce2S3) cenderung untuk menggantikan kadmium dalam pigmen merah untuk kontainer, mainan, barang-barang rumah tangga dan krat, karena kadmium kini dianggap lingkungan undesiderable.
Kegunaan lain cerium di televisi layar datar, lampu rendah energi cahaya dan CD magnet-optik, di krom plating. Penggunaan cerium masih terus berkembang, karena fakta bahwa itu adalah cocok untuk menghasilkan catalysers dan untuk memoles kaca.
6.      Praseodymium (Pr)
Praseodymium adalah logam lunak lembut, logam keperakan-kuning. Ini adalah anggota kelompok lantanida dari tabel periodik unsur. Ia bereaksi dengan oksigen perlahan-lahan: ketika terkena udara membentuk oksida hijau yang tidak melindunginya dari oksidasi lebih lanjut. Hal ini lebih tahan terhadap korosi di udara logam langka lainnya, tetapi masih harus disimpan dalam minyak atau dilapisi dengan plastik. Ia bereaksi cepat dengan air.
Aplikasi
Sebuah penggunaan utama dari logam berada dalam paduan piroforik digunakan dalam batu api rokok ringan. senyawa Praseodymium memiliki kegunaan yang berbeda: oksida digunakan dalam elektroda karbon untuk penerangan busur, dan tahu kemampuannya untuk memberikan kaca warna kuning yang bagus. Kaca ini menyaring radiasi inframerah, sehingga digunakan dalam kacamata yang melindungi mata tukang las. Garam digunakan untuk warna enamel dan kaca. Praseodymium dapat digunakan sebagai agen paduan dengan logam magnesium untuk menciptakan kekuatan tinggi yang digunakan dalam mesin pesawat.
Praseodymium adalah salah satu bahan kimia langka, yang dapat ditemukan di rumah-rumah dalam peralatan seperti televisi warna, lampu neon, lampu hemat energi dan kacamata. Semua bahan kimia jarang memiliki sifat sebanding. Penggunaan praseodymium masih terus berkembang, karena fakta bahwa itu adalah cocok untuk menghasilkan catalysers dan untuk memoles kaca.
7.      Neodymium (Nd)
Neodimium adalah logam keperak-kuning mengkilap. Hal ini sangat reaktif dan turnishes qickly di udara dan membentuk dilapisi logam tidak melindungi dari oksidasi lebih lanjut, sehingga harus disimpan jauh dari kontak dengan udara. Bereaksi lambat dengan air dingin dan cepat dengan panas.
Aplikasi
Neodymium adalah salah satu bahan kimia langka, yang dapat ditemukan di rumah-rumah dalam peralatan seperti televisi warna, lampu neon, lampu hemat energi dan kacamata. Semua bahan kimia jarang memiliki sifat sebanding. Nedymium adalah salah satu dari beberapa logam paduan yang biasa digunakan dalam batu api ringan. Yang paling penting adalah neodybium paduan, besi dan boron (NIB), ditemukan untuk membuat magnet permanen yang sangat baik. Magnet ini merupakan bagian dari komponen kendaraan modern, digunakan dalam penyimpanan data komputer dan pengeras suara. Neodymium digunakan dalam pewarnaan gelas (kaca didymium) mampu menyerap sorotan natrium kuning api. Kaca semacam ini digunakan untuk melindungi mata tukang las. Hal ini juga digunakan untuk kaca nuansa warna ungu yang menarik.
8.      Promethium (Pm)
Promethium adalah logam langka-bumi yang memancarkan radius beta. Hal ini sangat radoiactive dan langka, sehingga sedikit dipelajari: kimia dan sifat fisik yang tidak didefinisikan dengan baik. garam promethium memiliki warna merah muda atau merah yang coluors udara sekitarnya dengan cahaya biru-hijau pucat.
Aplikasi
Prometium sebagian besar digunakan untuk tujuan penelitian. Hal ini dapat digunakan sebagai sumber radiasi beta pada cat bercahaya, dalam baterai nuklir untuk peluru kendali, jam tangan, alat pacu jantung dan rados, dan sebagai sumber cahaya untuk sinyal. Ada kemungkinan bahwa di masa depan akan digunakan sebagai sumber X-ray portabel.
9.      Samarium (Sm)
Samarium adalah logam keperak-putih milik kelompok lantanida dari tabel periodik. Hal ini relatif stabil pada suhu ruang di udara kering, tetapi menyatu ketika dipanaskan di atas 150 C dan membentuk lapisan oksida di udara lembab. Seperti samarium europium mempunyai keadaan oksidasi yang relatif stabil (II).
Aplikasi
Samarium digunakan sebagai katalis dalam reaksi organik tertentu: iodida samarium (SmI2) digunakan oleh ahli kimia penelitian organik untuk membuat versi sintetis produk alami. Oksida, Samaria, digunakan untuk membuat kaca menyerap khusus inframerah dan inti dari elektroda karbon busur-lampu dan sebagai katalis untuk dehidrasi dan dehidrogenasi etanol. Its senyawa dengan kobalt (SmCo5) digunakan dalam pembuatan bahan magnet permanen baru.
10.  Europium (Eu)
Europium merupakan logam lunak keperakan, keduanya dan mahal. Ini adalah yang paling reaktif dari kelompok lantanida: itu tarnishes cepat di udara pada suhu kamar, luka bakar di sekitar 150 C hingga 180 C dan bereaksi readly dengan air.
Aplikasi
Europium adalah adsorber neutron,, sehingga digunakan dalam batang kendali reaktor nuklir. Europium fosfor digunakan dalam tabung televisi untuk memberikan warna merah cerah dan sebagai penggerak untuk fosfor itrium berbasis. Untuk kuat penerangan jalan yang sedikit europium ditambahkan ke lampu uap merkuri untuk memberikan cahaya lebih alami. Sebuah garam europium dipakai bedak pendar yang lebih baru dan cat.
11.  Gadolinium (Gd)
Gadolinium adalah lembut, mengkilap, ulet, logam keperakan milik kelompok lantanida dari bagan periodik. Logam tidak becek di udara kering tetapi bentuk film oksida di udara lembab. Gadolinium bereaksi perlahan dengan air dan larut dalam asam. Gadolinium menjadi superkonduktif bawah 1083 K. Sangat magnet pada suhu kamar.
Aplikasi
Gadolinium telah menemukan beberapa digunakan dalam batang kendali untuk reaktor nuklir dan pembangkit listrik tenaga nuklir, melainkan digunakan untuk membuat garnet untuk aplikasi microwave dan senyawanya digunakan untuk membuat fosfor untuk tabung TV warna. Metalic gadolinium jarang digunakan sebagai logam itu sendiri, tapi paduan perusahaan digunakan untuk membuat magnet dan komponen elektronik seperti rekaman kepala untuk perekam video. Hal ini juga digunakan untuk pembuatan compact disk dan memori komputer.
12.  Terbium (Tb)
TB adalah lembut, lunak, ulet, perak abu-abu logam anggota kelompok lantanida dari tabel periodik. Hal ini cukup stabil di udara, tetapi perlahan-lahan dioksidasi dan bereaksi dengan air dingin.
Aplikasi
TB jarang dan mahal, sehingga memiliki sedikit penggunaan komersial. Beberapa menggunakan minor di laser, peralatan semikonduktor, dan fosfor dalam tabung televisi berwarna. Hal ini juga digunakan dalam perangkat solid-state, sebagai stabilisator sel bahan bakar yang beroperasi pada suhu tinggi.
13.  Disprosium (Dy)
Disprosium adalah, berkilau sangat lembut, logam keperakan. Hal ini stabil di udara pada suhu kamar bahkan jika itu secara perlahan oxydized oleh oksigen. Bereaksi dengan air dingin dan cepat larut dalam asam. Ia membentuk beberapa garam berwarna cerah. karakteristik Disprosium bisa menjadi sangat dipengaruhi oleh keberadaan kotoran.
Aplikasi
Disprosium digunakan dalam reaktor nuklir sebagai keramik logam, material komposit yang terbuat dari keramik dan logam disinter, untuk membuat bahan laser, batang kendali reaktor nuklir, sebagai sumber radiasi inframerah untuk mempelajari reaksi kimia. Lain digunakan dalam bidang radioaktivitas adalah dosimeter untuk pemantauan paparan radiasi pengion.
14.  Holmium (Ho)
Holmium adalah, melleable lembut, logam berkilau dengan warna perak, milik seri lantanides dari tabel periodik unsur. Hal ini perlahan diserang oleh oksigen dan air dan larut dalam asam. Hal ini stabil di udara kering pada suhu kamar.
Aplikasi
paduan holmium digunakan sebagai konsentrator fluks magnetik untuk menciptakan medan magnet terkuat yang dihasilkan secara artifisial. Hal ini juga digunakan dalam reaktor nuklir untuk batang kendali nuklir. Holmium oksida digunakan sebagai pewarna gas kuning.
15.  Erbium (Er)
Erbium adalah lembut, lunak, berkilau, logam keperakan. Hal ini sangat stabil di udara, bereaksi sangat lambat dengan oksigen dan air dan larut dalam asam. garam nya adalah berwarna merah dan memiliki spektrum adsorpsi tajam dalam cahaya tampak, ultraviolet dan inframerah.
Aplikasi
Beberapa erbium ditambahkan ke paduan dengan logam vanadium tersebut karena menurunkan kekerasan mereka, membuat mereka lebih bisa diterapkan. Karena adsorpsinya cahaya inframerah, erbium ditambahkan di kaca kacamata pengaman khusus bagi pekerja, seperti tukang las dan-kaca blower. Hal ini digunakan sebagai filter fotografi juga, dan untuk serat optik ganja secara berkala untuk memperkuat sinyal. Akhirnya, karena warna pink nya, erbium kadang-kadang digunakan sebagai enamel kaca dan porselen Glaze pewarna.
16.  Iterbium (Yb)
Iterbium adalah elemen lembut, mudah dibentuk dan agak ulet yang menunjukkan yang kilau keperakan cerah. Sebuah tanah jarang, unsur ini mudah diserang dan dilarutkan oleh asam mineral, perlahan bereaksi dengan air, dan mengoksidasi di udara. oksida Bentuk lapisan pelindung di permukaan. Senyawa Iterbium jarang terjadi.
Iterbium kadang-kadang dikaitkan dengan itrium atau unsur-unsur terkait lainnya dan digunakan dalam baja tertentu. Logam tersebut dapat digunakan untuk membantu meningkatkan penyempurnaan butir, kekuatan, dan sifat mekanis lainnya dari baja stainless. Beberapa paduan Iterbium telah digunakan dalam kedokteran gigi. Satu isotop Iterbium telah digunakan sebagai pengganti sumber radiasi untuk mesin X-ray portabel ketika listrik tidak tersedia. Seperti unsur jarang-bumi lainnya, dapat digunakan untuk fosfor obat bius, atau untuk kapasitor keramik dan perangkat elektronik lainnya, dan bahkan dapat bertindak sebagai katalis industri.



DAFTAR PUSTAKA

Bayliss, Peter, A, A. Levinson. A system of nomenclature for rare-earth mineral species: Revision and extension. http://www.minsocam.org/. Department of Geology and Geophysics, The University of Calgary. Canada. 1988
Cotton, F Albert & Wilkinson, Geoffrey. Basic Inorganic Chemistry. Jhon Wiley and Son. 1976
Saito,Taro, diterjemahkan dari versi Bahasa Inggrisnya oleh Ismunandar. 1996. Buku Teks Kimia Anorganik Online. Tokyo: Iwanami Shoten Publishers
http://id.wikipedia.org/wiki/Lantanida
http://en.wikipedia.org/wiki/Lanthanide
http://aryandi28.blogspot.com/2010/02/lantanida.html
http://id.wikipedia.org/wiki/Lutetium
http://www.mii.org/rareearths.html

Halogen

Posted in Kimia AnOrganik, Tugas Kuliah, Uncategorized on Januari 12, 2011 by rikychem
HALOGEN

SEJARAH
Unsur-unsur kimia yang berada pada golongan 17/VII A di dalam tabel periodik
dikelompokan sebagai golongan Halogen. Golongan tersebut dinamakan ”Halogen”
yang artinya ”pembentuk garam” ( berasal dari bahasa yunani: Halos: Garam; Genes :
Pembentuk ). Unsur-unsur pembentuk garam tersebut terdiri dari: Flourin ( F ), Klorin
( Cl ), Bromin ( Br ), Yodium ( I ), Astatin ( At ) dan unsur Ununseptium( Uus )
yang belum ditemukan.
Kelima unsur yang telah ditemukan adalah sebagai berikut:
1.    Flourin ( F ) ditemukan dalam Flourspar oleh Schwandhard pada tahun 1970 dan pada
tahun 1886 Ferdinand Hendri Moissan dari Francis berhasil membuar gas Flourin melalui
proses Elektrolisis.
2.    klorin ( Cl ) ditemukan oleh Schele pada tahun 1974 diberi nama oleh Davy pada tahun
1810.
3.    Bromin ( Br ) ditemukan oleh Balard pada tahun 1826. Brom merupakan zat cair
bewarna coklat kemerahan, mudah menguap pada suhu kamar, uapnya bewarna merah.
Brom bersifat kurang reaktif dibandingkan Clor.
4.    Yodium ( I ) ditemukan oleh Courtois pada tahun 1811.
5.    Astatin ( At ) ditemukan oleh DR. Corson, K.R. Mackenzie, dan E. Segre pada tahun
1940. Astatin merupakan unsur radioaktif pertama yang dibuat sebagai hasil pemboman
Bismut dengan partikel alfa.


Afiinitas elektron khlorin (348.5 kJmol-1) adalah yang terbesar dan fluorin (332.6 kJmol-1) nilainya terletak di antara afinitas elektron khlorin dan bromin (324.7 kJmol-1). Keelektronegativan fluorin adalah yang tertinggi dari semua halogen.
Karena halogen dihasilkan sebagai garam logam, unsurnya dihasilkan dengan elektrolisis. Fluorin hanya berbilangan oksidasi -1 dalam senyawanya, walaupun bilangan oksidasi halogen lain dapat bervariasi dari -1 ke +7. Astatin, At, tidak memiliki nuklida stabil dan sangat sedikit sifat kimianya yang diketahui.
Dengan sifat yang reaktif ini, Halogen biasanya membentuk dua macam ikatan, yakni ikatan ionik dengan unsur logam, atau ikatan kovalen dengan unsur non-logam. Contoh yang paling akrab dengan kita, adalah ikatan ionik dari unsur Halogen Natrium dan Chlor, alias garam dapur. Sementara ikatan kovalen, biasanya terjadi dengan unsur Karbon dan membentuk apa yang disebut Halogen-organik. Dari situ terlihat, tidak semua ikatan unsur halogen bersifat merugikan, bahkan diantaranya amat berguna bagi kehidupan manusia, seperti contohnya garam dapur, atau obat antibiotika Vancomycin.
Sifat – sifat halogen :
1.    Sifat fisik unsur halogen
Sifat fisik Fluorin Klorin Bromin Iodin Astatin
Wujud zat gas gas cair padat Padat
Warna Kuning muda Hijau kekuningan Merah kecoklatan ungu
Titik didih -188,14oC -34,6oC 58,78oC 184,35oC 337oC
Titik beku -219,62oC -100,98oC -7,25oC 113,5oC 302oC
Kerapatan (g/cm3) 1,1 1,5 3,0 5,0
Kelarutan dalam air (g/Lair) bereaksi 20 42 3
•       Flourin dan klorin berwujud gas pada suhu ruangan sebabtitik didih dan titik leleh/beku yang lebih rendah dari suhu ruangan ( 25oC ).
•       Bromin memiliki titik didih lebih tinggi dari suhu ruangan, sedangkan titik lelehnya
lebih rendah sehingga berwujud cair.
•       Iodin dan Astatin berwujud padat karena titik didih dan titik bekunya lebih tinggi.
•       Kelarutan halogen dalam air dalam satu golongan dari atas kebawah kelarutannya
semakin kecil karena bertambahnya massa atom relatif. Tetapi, 4HF + O2 flourin tidak
larut tetapi bereaksi: 2F2 + 2H2O. Sedangkan bromin kelarutannya paling besar karena berwujud cair (paling mudah larut ).
•       Iodin sukar larut dalam air. Agar iodin larut dengan baik, ditambahkan

2.    Sifat kimia unsur halogen
Sifat kimia   Flourin Klorin Bromin Iodin Astatin
Massa atom 19 35,5 80 127 210
Jari-jari atom (pm) 72 99 115 133 155
Jari-jari ion X- 136 180 195 216
Keelektronegatifan 4,0 3,0 2,8 2,5 2,2
Energi ionisasi 1680 1260 1140 1010
•       Jari-jari atom dari atas ke bawah dalam tabel periodik semakin bertambah karena
jumlah kulit terisi elektron semakin banyak.
•       Jari-jari ion lebih besar dari jari-jari atom karena akan menerima elektron sehingga
kulitnya terisi penuh.
•       Elektronegatifitas dari F sampai At semakin kecil karena jari-jarinya semakin besar
sehingga akan terletak jauh terhadap inti maka elektron akan sulit untuk diterima.
•       Energi ionisasi dari atas ke bawah semakin kecil karena jika jari-jari atom kecil, lebih dekat dengan inti, energi ionisasinya semakin kuat/besar.
•       Daya pengoksidasi
•       Potensial reduksi F2 paling besar sehingga akn mudah mengalami reduksi dan disebut
oksidator terkuat. Sedangkan terlemah adalah I2 karena memiliki potensial reduksi
terkecil.
•       Sifat oksidator: F2 > Cl2 > Br2 > I2
•       Sifat reduktor : I- > Br- > Cl- > F-
•       Reduktor terkuat mudah melepas electron ion iodida paling mudah  mengalami oksidasi melepas electron sehingga bertindak sebagai reduktr kuat.
•       Reaksi pendesakkan
•       Berlangsungnya suatu reaksi tidak hanya ditentukan oleh potensial sel. Tetapi,
berlangsung tidaknya suatu reaksi dapat dilihat dari reaksi pendesakkan halogen. Halogen yang terletak lebih atas dalam golongan VII A dalam keadaan diatomik mampu mendesak ion halogen dari garamnya yang terletak dibawahnya.
•       Sifat asam
sifat asam yang dapat dibentuk dari unsur halogen, yaitu: asam halida, dan oksilhalida.
a. Asam halide ( HX )
Asam halida terdiri dari asam fluorida ( HF ), asam klorida ( HCl ), asam bromida
( HBr ), dan asam iodida ( HI ). Kekuatan asam halida bergantung pada kekuatan ikatan
antara HX atau kemudahan senyawa halida untuk memutuskan ikatan antara HX.
Dalam golongan VII A, semakin keatas ikatan antara atom HX semakin kuat. Senyawa
halida akan sulit terurai menjadi H+ dan X¬-. H+ tersebut mengakibatkan kekuatan asam.
Jadi kekuatan asam halida:
HF < HCl < HBr Hi > HBr > HCl
Pada senyawa HF, walaupun memiliki Mr terkecil tetapi memiliki ikatan antar molekul
yang sangat kuat “ikatan hydrogen” sehingga titik didihnya paling tinggi.
Unsur-unsur halogen di alam
•       Fluor dalam mineral fluorspar (CaF2), kriolit (Na3AlF6) dan fluorapatit ([Ca3(PO4)2]3CaF2)
•       Klor, yod dan brom terdapat pada air laut sebagai halida dari garam-garam natrium, kalium, magnesium dan kalsium
•       Yodium terdapat pada ganggang laut dan lumut juga terdapat di Chili (sendawa chili (NaNO3)
•       Unsur astatin bersifat radioaktif

Clor
Klor (bahasa Yunani: Chloros, “hijau pucat”), adalah unsur kimia dengan simbol Cl dan nomor atom 17. Dalam tabel periodik, unsur ini termasuk kelompok halogen atau grup 17 (sistem lama: VII or VIIA). Dalam bentuk ion klorida, unsur ini adalah pembentuk garam dan senyawa lain yang tersedia di alam dalam jumlah yang sangat berlimpah dan diperlukan untuk pembentukan hampir semua bentuk kehidupan, termasuk manusia. Dalam bentuk gas, klorin berwarna kuning kehijauan, dan sangat beracun. Dalam bentuk cair atau padat, klor sering digunakan sebagai oksidan, pemutih, atau desinfektan.
Brom
Brom (Yunani: βρωμος, brómos – berbau pesing), adalah unsur kimia pada tabel periodik yang memiliki simbol Br dan nomor atom 35. Unsur dari deret kimia halogen ini berbentuk cairan berwarna merah pada suhu kamar dan memiliki reaktivitas di antara klor dan yodium. Dalam bentuk cairan, zat ini bersifat korosif terhadap jaringan sel manusia dan uapnya menyebabkan iritasi pada mata dan tenggorokan. Dalam bentuk gas, brom bersifat toksik.
Yodium
Yodium (Yunani: Iodes – ungu), adalah unsur kimia pada tabel periodik yang memiliki simbol I dan nomor atom 53. Unsur ini diperlukan oleh hampir semua mahkluk hidup. Yodium adalah halogen yang reaktivitasnya paling rendah dan paling bersifat elektropositif. Sebagai catatan, seharusnya astatin lebih rendah reaktivitasnya dan lebih elektropositif dari pada yodium, tapi kelangkaan astatin membuat sulit untuk mengkonfirmasikan hal ini.
Yodium terutama digunakan dalam medis, fotografi, dan sebagai pewarna. Seperti halnya semua unsur halogen lain, yodium ditemukan dalam bentuk molekul diatomik.
Florine
Florine berwarna kuning pucat (meskipun beberapa buku keliru menyatakan sebagai hijau pucat atau tidak berwarna)
Keberadaan di Alam
Halogen merupakan golongan non-logam yang sangat reaktif, sehingga unsur-unsurnya tidak dijumpai pada keadaan bebas. Pada umumnya ditemukan dialam dalam bentuk senyawa garam-garamnya. Garam yang terbentuk disebut Halida. Flourin ditemukan
dalam mineral-mineral pada kulit bumi: fluorspar ( CaF2 ) dan kriolid ( Na3¬AlF6 ).
Klorin, Bromin, dan Iodin terkandung pada air laut dalam bentuk garam-garam halida
dari natrium, magnesium, kalium, dan kalsium. Garam halida yang paling banyak adalah
NaCl 2,8% berat air laut. Banyaknya ion halida pada air laut: 0,53 M Cl¬- ; 8X10-4 M
Br- ; 5X10-7 M I-. Selain itu, klorin ditemukan di alam sebagai gas Cl2, senyawa dan
mineral seperti kamalit dan silvit.
Iodin ditemukan dalam jumlah berlimpah sebagai garan ( NaIO3 ) di daerah Chili,
Amerika Serikat. Iodin yang ditemukan dalam senyawa NaI banyak terdapat pada sumber
air diwatudakon ( Mojokerto ).
Selain di alam, ion halida juga terdapat dalam tubuh manusia. Ion clorida merupakan
anion yang terkandung dalam plasma darah, cairan tubuh, air susu, air mata, air ludah,
dan cairan ekskresi. Ion iodida terdapat dalam kelenjar tiroid. Ion flourida merupakan
komponen pembuat bahan perekat flouroaptit [ Ca5(PO¬4)3F ] yang terdapat pada
lapisan email gigi.
Kegunaan Halogen
Fluorin
1.        Asam flourida digunakan untuk mengukir ( mengetsa ) gelas.
2.        Natrium heksafluoroksilikat ( Na2SiF6 ) digunakan untuk bahan campuran pasta gigi.
3.        Natrium fluorida ( NaF ) untuk mengawetkan kayu.
4.        Belerang hexafluorida ( SF6 ) sebagai insulator.
5.        Kriolit ( Na3AlF6 ) sebagai bahan pelarut dalam pengolahan bahan alumunium.
6.        Freon-12 ( CF2Cl2 ) sebagai zat pendingin pada kulkas dan AC.
7.        Teflon digunakan sebagai pada peralatan mesin.
Klorin
1.      Asam klorida ( HCl ) digunakan pada industri logam. Untuk mengekstrasi logam tersebut.
2.      Natrium klorida ( NaCl ) digunakan sebagai garam dapur.
3.      Kalium klorida ( KCl ) sebagai pupuk tanaman.
4.      Amoniumklorida ( NH4Cl ) sebagai bahan pengisi batu baterai.
5.      Natrium hipoklorit ( NaClO ) digunakan sebagai pengelontang ( breaching agent ) untuk kain dan kertas.
6.      CaOCl2/( Ca2+ )( Cl- )( ClO- ) sebagai serbuk pengelontang atau kapur klor.
7.      Kalsium hipoklorit ([Ca( OCl2 )2 ] sebagai zat disenfekton pada air ledeng.
8.      Kalium klorat ( KCl ) bahan pembuat mercon dan korek api.
9.      Seng klorida ( ZnCl2 ) sebagai bahan pematri ( solder ).
Bromin
1.      Natrium bromide( NaBr )sebagai obat penenang saraf
2.      Perak bromide( AgBr )disuspensikan dalam gelatin untuk film fotografi
3.      Metil bromide( CH3Br )zat pemadam kebakaran
4.      Etilen dibromida( C2H4Br2 )ditambahkan pada bensin untuk mengubah Pb menjadi
PbBr2.

Iodin
1.        Sebagai obat antiseptic
2.        mengidentifikasi amilum
3.        Kalium Iodat( KIO3 )ditambahkan pada garam dapur
4.        Iodoform( CHI3 )merupakan zat organic
5.        Perak Iodida( AgI )digunakan dalam film fotografi.

Karakteristik Bahan Kimia di Laboratorium Biokimia

Posted in Biokimia, Pengetahuan Laboratorium, Tugas Kuliah, Uncategorized on Januari 12, 2011 by rikychem
KARAKTERISTIK BAHAN KIMIA

Logam Alkali

Posted in Kimia AnOrganik, Tugas Kuliah, Uncategorized on Januari 9, 2011 by rikychem LOGAM ALKALI

Penjelasan Umum
Golongan IA disebut juga logam alkali. Logam alkali melimpah dalam mineral dan terdapat di air laut.  Khususnya Na (natrium), di kerak bumi termasuk  logam terbanyak keempat setelah Al, Fe, dan Ca. Walaupun keberadaan ion natrium dan kalium telah dikenali sejak lama, sejumlah usaha untuk mengisolasi logam ini dari larutan air garamnya gagal sebab kereaktifannya yang tinggi pada air. Akhirnya Na (natrium) dan juga Kalium (1807) bisa diisolasi dengan mengelektrolisis garam leleh KOH atau NaOH oleh H. Davy di abad ke-19. Kemudian  Li (litium) ditemukan sebagai unsur baru di tahun 1817, dan Davy segera setelah itu mengisolasinya dari Li2O dengan metode elektrolisis. Setelah itu pada tahun 1861, Rb (rubidium) dan Cs (cesium), ditemukan sebagai unsur baru dengan teknik spektroskopi. Fr (fransium) ditemukan dengan menggunakan teknik radiokimia tahun 1939, kelimpahan alaminya sangat rendah karena memiliki waktu paro 21 menit. Logam-logam ini juga bersifat sebagai reduktor dan mempunyai warna nyala yang indah sehingga dipakai sebagai kembang api.
Sifat Fisis
Secara umum, logam alkali ditemukan dalam bentuk padat. Kecuali Cs (cesium) yang berbentuk cair jika suhu lingkungan pada saat pengukuran melebihi 28oC. Meskipun mereka adalah logam paling kuat, tetapi secara fisik mereka lunak bahkan bisa diiris menggunakan pisau. Hal ini karena mereka hanya memiliki satu elektron valensi pada kulit terluarnya. Sedangkan jumlah kulitnya makin bertambah dari atas ke bawah dalam tabel unsur periodik. Sehingga ikatan antar logamnya lemah.
Titik didih dan titik leleh
Titik didih adalah titik suhu perubahan wujud dari cair menjadi gas. Dan titik leleh adalah titik suhu perubahan wujud dari padat ke cair. Dalam golongan IA, dari Li ke Cs kecenderungan titik didih dan titik lelehnya turun. Seperti terlihat pada tabel.
Sifat Li Na K Rb Cs
Titik Didih (oC) 1347 883 774 688 678
Ttik Leleh (oC) 181 97,8 63,6 38,9 28,4
Dari penurunan titik didih dan titik leleh ini, bisa disimpulkan bahwa Cs memiliki titik didih dan titik leleh terendah dibandingkan logam lainnya karena ia memiliki ikatan logam paling lemah sehingga akan lebih mudah untuk melepas ikatan.
Warna nyala
Salah satu ciri khas dari logam alkali adalah memiliki sprektum emisi. Sprektum ini dihasilkan bila larutan garamnya dipanaskan dalam nyala Bunsen, atau dengan mengalirkan muatan listrik pada uapnya. Ketika atom diberi energi (dipanaskan) elektronnya akan tereksitasi ke tingkat yang lebih tinggi. Ketika energi itu dihentikan, maka elektronnya akan kembali lagi ke tingkat dasar sehingga memancarkan energi radiasi elektromagnetik.  Menurut Neils Bohr, besarnya energi yang dipancarkan oleh setiap atom jumlahnya tertentu (terkuantitas) dalam bentuk spektrum emisi. Sebagian anggota spektrum terletak di daerah sinar tampak sehingga akan memberikan warna-warna yang jelas dan khas untuk setiap atom.

Sifat Kimia
Energi Ionisasi
Energi ionisasi pertama adalah energi yang dibutuhkan untuk melepaskan satu elektron yang terikat paling lemah dari satu mol atom dalam keadaan gas. Energi ionisasi dalam satu golongan berhubungan erat dengan jari-jari atom. Jari-jari atom pada golongan alkali dari Li ke Cs jari-jarinya semakin besar, sesuai dengan pertambahan jumlah kulitnya. Semakin banyak jumlah kulitnya, maka semakin besar jari-jari atomnya. Semakin besar jari-jari atom, maka daya tarik antara proton dan elektron terluarnya semakin kecil. Sehingga energi ionisasinya pun semakin kecil.
Pada logam alkali yang memiliki satu elektron valensi ia akan lebih mudah membentuk ion positif agar stabil dengan melepas satu elektron tersebut. Li menjadi Li+, Na menjadi Na+, K manjadi K+ dan yang lainnya.
Jari-jari ionnya mempunyai ukuran yang lebih kecil dibandingkan jari-jari atomnya, karena ion logam alkali membentuk ion positif. Ion positif mempunyai jumlah elektron yang lebih sedikit dibandingkan atomnya. Berkurangnya jumlah elektron menyebabkan daya tarik inti terhadap lintasan elektron yang paling luar menjadi lebih kuat sehingga lintasan elektron lebih tertarik ke arah inti.
Kereaktifan
Logam alkali sangat reaktif dibandingkan logam golongan lain. Selain disebabkan oleh jumlah elektron valensi yang hanya satu dan ukuran jari-jari atom yang besar, sifat ini juga disebabkan oleh harga energi ionisaisnya yang lebih kecil dibandingkan logam golongan lain. Dari Li sampai Cs harga energi ionisai semakin kecil sehingga logamnya semakin reaktif. Kereaktifan logam alkali dibuktikan dengan kemudahannya bereaksi dengan air, oksigen, unsur-unsur halogen, dan hidrogen.
Reaksi-reaksi
Reaksi dengan air
Logam alkali bereaksi dengan air menghasilkan gas hidrogen dan logam hidroksida. Litium (Li) sedikit bereaksi dan sangat lambat, sodium (Na) jauh lebih cepat, kalium (K) terbakar, sedangkan rubidium (Rb) dan cesium (Cs) menimbulkan ledakan. Reaksi antara logam dan air adalah sebaga berikut:
2M + 2H2O  –>   2MOH + H2
Reaksi dengan Oksigen
Logam alkali juga bereaksi dengan oksigen membentuk oksida. Li, Na, K biasanya disimpan dalam minyak untuk menghindari adanya kontak dengan oksigen. Oksida yang terbentuk dari logam alkali bermacam-macam. Li membentuk oksida normal Li2O. Na membentuk peroksida Na2O2. Bila jumlah oksigen berkurang atau dengan tekanan rendah dapat membentuk oksida normal Na2O. K, Rb, dan Cs membentuk super oksida MO2.
Reaksi dengan Air
Logam alkali bereaksi dengan air menghasilkan gas hidrogen dan basa kuat. Reaksi ini berlangsung sangat eksotermis yang berarti ia akan menimbulkan panas ketika bereaksi dengan air. Litium (Li) sedikit bereaksi dan sangat lambat, natrium (Na) jauh lebih cepat, kalium (K) terbakar sedangkan rubidium (Rb) dan cesium (Cs) menimbulkan ledakan. Reaksi antara logam dan air adalah sebagai berikut:
2M + 2H2O   –>    2MOH + H2
Logam akan berikatan dengan OH-. Semakin kuat sifat logamnya maka semakin kuat sifat basanya. Dari Li ke Cs pelepasan OH- akan semakin mudah (berhubungan dengan energi ionisasi) sehingga konsentrasi OH- yang terbentuk akan semakin tinggi. Maka Cs yang paling membentuk basa kuat.
Reaksi dengan Oksigen
Logam alkali juga bereaksi dengan oksigen membentuk oksida ( bilangan oksigen = -2), peroksida (bilangan oksigen = -1), atau superoksida (bilangan oksida =-1/2). Dari Li sampai Cs, kecenderungan logam alkali untuk menghasilkan senyawa peroksida atau superoksida semakin besar karena sifat logamnya semakin reaktif. Untuk menghasilkan oksida logam alkali, jumlah oksigen harus dibatasi dan digunakan suhu yang rendah (di bawah 180oC).
4L   +  O2  –>   2L2O
Untuk menghasilkan peroksida, selain jumlah okseigen yang dibatasi juga harus disertai pemanasan. Jika oksigennya berlebih maka akan terbentuk superoksida.
2L(s)   +   O2   –>   L2O2(s)
L(s)     +   O2?    LO2
Reaksi dengan unsur-unsur Halogen
Unsur halogen bersifat sebagai pengoksidasi. Reaksi ini menghasilkan garam halida
2L(s)   +  X2 –>  2LX
Reaksi dengan Hidrogen
Reaksi yang berlangsung akan menghasilkan senyawa hidrida. Senyawa hidrida adalah senyawa yang mengandung atom hidrogen dengan bilangan oksidasi negatif.                                                                                                                                                       2L(s)      + H2(g)    –>     2LH(s)
Keberadaan di alam
Senyawa-senyawa alkali yang paling banyak terdapat di alam adalah senyawa natrium dan kalium. Unsur alkali yang paling sedikit dijumpai adalah fransium, sebab unsur ini bersifat radioaktif dengan waktu paro pendek 21 menit, sehingga mudah berubah menjadi unsur lain.
Natrium terutama didapatkan pada air laut dalam bentuk garam NaCl yang terlarut. Konsentrasi ion Na+ pada air laut adalah 0,47 molar. NaCl kita temui juga dibeberapa daerah sebagai mineral pada halit (batu karang NaCl). Selain berupa NaCl, natrium tersebar di kulit bumi sebagai natron (Na2C03.10H20), kriolit (Na3AlF6), sendawa chili (NaNO3), albit (Na2).Al2O3.3SiO2) dan boraks (Na2B4O7.1OH2).
Kalium terdapat dikulit bumi sebagai mineral silvit (KCl), karnalit (KCl.MgCl2.6H2O), sendawa (KNO3), dan  feldspar (K2O.Al2O3.3SiO2). Dalam tumbuh-tumbuhan, kalium banyak terkandung sebagai garam oksalat dan tatrat. Jika tumbuh-tumbuhan diperabukan, kita memperoleh K2CO3. Sebagai unsur-unsur alkali yang paling banyak dijumpai di alam, tidak aneh jika unsur natrium dan kalium ikut berperan dalam metabolisme pada tubuh makhluk hidup. Pada tubuh man usia dan hewan, ion-ion Na+dan K+ berperan dalam menghantarkan konduksi saraf, serta dalam memelihara keseimbangan osmosis dan pH darah. Pada tumbuh-tumbuhan, ion K+ jauh lebih penting dari pada ion Na+, sebab ion K+ merupakan zat esensial untuk pertumbuhan.
Adapun logam-logam alkali lainnya sedikit dijumpai di alam. Jumlah litium relatif lebih banyak daripada sesium dan rubidium. Ketiga unsur ini (Li,Cs dan Rb) terdapat dalam mineral fosfat trifilit, dan pada mineral silikat lepidolit kita temukan litium yang bercampur dengan alumunium.
Ekstraksi Logam
a. Metode Elektrolisis
Logam Li dan Na adalah reduktor kuat sehingga tidak mungkin diperoleh dengan mereduksi oksidanya. Oleh karena itu logam-logam ini diperoleh dengan cara elektrolisis.
Elektrolisis Li
Sumber logam Li adalah spodumene [LiAl(SO)3]. Spodumene dipanaskan pada suhu 100oC, lalu dicampur dengan H2SO4 panas, dan dilarutkan ke air untuk memperoleh larutan Li2SO4. kemudian, Li2SO4 direksikan dengan Na2CO3 membentuk Li2CO3yang sukar larut.
Li­­­2SO4 +  Na2CO3 –>  Li­­­2CO3 +  Na2SO4
Setelah itu, Li2CO3 direaksikan dengan HCl untuk membentuk LiCl.
Li­­­2CO3 +  2HCl –> 2LiCl +  H2O +  CO2
Li dapat diperoleh dari elektrolisis lelehan LiCl.
Katoda :  Li+ +  e- –>  Li
Anoda  :   2Cl- ?  Cl2 + 2e-
Karena titik leleh LiCl tinggi (>600oC), biaya elektrolisis menjadi mahal. Namun, biaya dapat ditekan dengan cara menambahkan KCl (55% LiCl dan 45% KCl) yang dapat menurunkan titik leleh menjadi 430oC.

Elektrolisis Natrium
Sumber utama logam natrium adalah garam batu dan air laut. Na hanya dapat diperoleh dari elektrolisis lelehan NaCl.
Katoda :  Na+ +  e- –>  Na
Anoda  :   2Cl- –>  Cl2 + 2e-
a.  Metode reduksi
Untuk mendapatkan logam K, Rb, dan Cs dilakukan metode reduksi sebab jika dengan metode elektrolisis logam ini cenderung larut dalam larutan garamnya.
Reduksi K
Sumber utama logam K adalah silvit (KCl). Logam ini didapatkan dengan mereduksi lelehan KCl.
Na  +  KCl  –>  K  +  NaCl
Reaksi ini berada dalam kesetimbangan karena K mudah menguap maka K dapat dikeluarkan dari sistem. Dan kesetimbangan akan tergeser ke kanan untuk memproduksi K. Untuk reduksi Rb dan Cs prosesnya sama dengan proses reduksi K.
Kegunaan logam dan senyawa-senyawa yang mengandung alkali
Logam-logam alkali mempunyai titik leleh yang rendah sehingga dapat digunakan sebagai medium pemindah panas pada suatu reaktor nuklir. Logam alkali mudah dilelehkan, lalu dialirkan melalui pipa-pipa ke pusat reaktor, dimana logam alkali menyerap panas. Selanjutnya panas tersebut ditransfer oleh alkali cair kepada bagian diluar reaktor untuk menguapkan air. Uap yang timbul kemudian dipakai untuk menjalankan generator listrik.
Oleh karena logam alkali mudah bereaksi dengan air atau oksigen, logam-logam alkali sering dipakai sebagai pengikat (getter) uap air atau gas O2 pada proses pembuatan tabung-tabung vakum peralatan elektronika.
Logam alkali yang banyak digunakan adalah natrium. Berlimpahnya senyawa natrium dialam menyebabkan logam ini relatif murah dibandingkan dengan logam-logam alkali yang lain.
Disamping sebagai pemindah panas dan sebagai getter, logam natrium memiliki beberapa kegunaan lain sebagai berikut.
a.       Emisi warna kuning yang cemerlang tatkala dipanaskan menyebabkan uap natrium     dipakai sebagai lampu penerangan dijalan-jalan raya atau pada kendaraan.sinar kuning natrium ini mempunyai kemampuan untuk menembus  kabut.
b.      Logam natrium digunakan sebagai reduktor dalam pembuatan logam titanium dari senyawanya.
TiCl4 + 4Na  –>   Ti +4NaCl
c.       Logam natrium digunakan dalam pembuatan tetra etil timbal, zat ini ketukan yang ditambahkan pada bensin.
Pb +4Na +4C2H5Cl® Pb(C2H5)4 = 4NaCl
Senyawa-senyawa alkali lebih banyak kenggunaanya jika dibandingkan dengan logam-logam murninya, sebab jumlahnya cukup berlimpah di alam, terutama garam-garam natrium dan kalium. Dibawah ini tercantum beberapa contoh senyawa alkali beserta keguanaannya.
  • NaCl, Garam dapur (garam meja); bahan baku pembuatan NaOH,Na2CO3, logam Na, dan gas klorin.
  • NaOH, Soda kaustik; bahan utama dalam industri sabun,kertas dan tekstil; pemurnian bauksit; ekstrasi senyawa-senyawa aromatic dari batubara.
  • Na2CO3, Soda cuci; pelunak kesadahan air; zat pembersih (cleanser) peralatan rumah tangga; industri gelas.
  • NaHCO3, Soda (soda kue); campuran pada minuman dalam botol (beverage) agar menghasilkan CO2; bahan pemadam api; obat-obatan; bahan pembuat kue.
  • NaNO3, Pupuk; bahan pembuatan senyawa nitrat yang lain
  • NaNO2, Pembuatan zat warna (proses diazotasi); pencegahan korosi.
  • Na2SO4, garam Glauber;obat pencahar (cuci perut); zat pengering untuk senyawa organik.
  • NaOCl, Zat pengelantang(bleaching) untuk kain.
  • Na2S2O3, Larutan pencuci (”hipo”) dalam fotografi.
  • Na3AlF6, Pelarut dalam sintesis logam alumunium.
  • Na-benzoat, Zat pengawet makanan dalam kaleng; obat rematik.
  • Na-sitrat, Zat anti beku darah.
  • Na-glutamat, Penyedap masakan (vetsin).
  • Na-salsilat, Obat antipiretik (penurun panas).
  • KCl, Pupuk; bahan pembuat logam kalium dan KOH
  • KOH, Bahan pembuat sabun mandi; elektrolit batu baterai batu alkali.
  • KBr, Obat penenang saraf (sedative); pembuat plat potografi.
  • KClO3, Bahan korek api, mercon, zat peledak.
  • KIO3, Campuran garam dapur (sumber iodine bagi tubuh manusia).
  • K2CrO4, Indicator dalam titrasi argentomeri.
  • K2Cr2O7, Zat pengoksidasi (oksidator).
  • KMnO4, Zat pengoksidasi; zat desinfektan.
  • KNO3, Bahan mesiu; bahan pembuat HNO3.
  • K-sitrat, Obat diuretik dan saluran kemih.
  • K-hidrogentartrat, Bahan pembuat kue (serbuk tartar).